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Abstract needed so that the components of the mixture can be estinmated

) ) ) the learning process. Therefore a large amount of Gaussian ¢
This paper presents a novel acoustic modeling framework tha ponents and training data are required in order to deal it t
naturally extends the Hidden Markov Model (HMM) approach. goyrce of variability in a simple HMM.

The novel models reduce the errors caused by speaker \igyiabi Some methods have appeared in order to compensate more
by means of a local spectral mismatch reduction. A more com- gecyrately both sources of variability specially in thegfrency

plex and flexible speech production scheme can be assumed, inyis | this paper we focus the experiments towards thid kin
of speaker variability, manifested as the frequency deétions

which the local temporal and frequency elastic deformatiafrthe
speech are captured by the model. In the new framework ttessta ¢ ihe spectrum envelope that occur in speaker independ8Rt A

of a standard HMM, which are usually associated with tempora tasks, which are known to have its origin in the vocal tract an
transitions, are expanded so that a new degree of freedoth€for i |atory instant shapes. Some methods have appeareidysiy
model is provided and it is then possible to estimate an aptim  , qrder to compensate for speaker frequency variabilitycs
frequency warping factor at the same time as the decodertfieds — T.5qt Length Normalization, VTLN, [1, 2] and Maximum Likeli
best state sequence. In the local spectral warping baseélsnod ,qqq Linear Regression, MLLR, [3], which reduce the mistatc
the states become time-frequency related states and theenah  peryeen data an model, but those methods compensate the mis-
parameters of the model is comparable to the standard HM8&sin 1,50 given previous utterances and transcriptions oa epieaker
they share a certain amount of parameters as it will be shoh@.  jependent training data. The model framework, referre fiere
novel models are evaluated in the noise-free TIDIGITS c8IPU 55 the augMented stAte space acousTic dEcoder/modEl (MATE)
which includes connected digits uttered by male, femalechiie consists of an expansion of the VTLN methods to provide local
dren. It has been found that, under speaker group (age-9ende yanstormations to be locally optimized, simultaneouslytte de-
mismatch conditions, the local frequency warping reduceldV  ¢qqing of the state sequence in an expanded search trelis. T
Error Rate (WER) in mean by 20%, using the initial models.  yaining and the testing of MATE is speaker independentesin
When matched speaker group conditions were tested theve®r s expected to capture part of the speaker variability byrmaes
reduced in mean in@&.7% after reestimating the models. the expanded state space and the inter-transformatiosittcans.
Index Terms: speaker variability, local frequency warping. The first approaches to this paradigm were envisioned in [4]
: and then followed by [5, 6] in a more general approach. Those
1. Introduction methods were intended to normalize the speech signal totbe be
A speech modeling technique for speaker variability reidacis ter accepted by the model. The model presented in this paper i
investigated in this paper, since this variability has agieterest an evolution of them and the transformation is embeddedtireo
due to the impact on the accuracy of Automatic Speech Recog-model, allowing a more general formulation and derivatibthe
nition, ASR, systems. It will be shown that the model presdnt ~ model parameter estimation expressions, as it will be stiowec-
provides a mechanism to reduce the error on ASR for a wideerang tions 3 and 3.2. The transformations of MATE described is #nt
of local deformations of the speech parameters acrossigeaind ticle are a valid generalization of [5] in both sources ofiahility,

frequency axes. time and frequency but, as the effect of the local temporaping
Standard techniques as Hidden Markov Models (HMM) pro- is less noticeable unless a stressed or pathological speephs
vide a successful reduction of the speaker variability imgeof is tested, the experiments in this article are going to bented

temporal variability thanks to the time alignment of theetinces o show speaker independent ASR improvements in the sense of
to the models by the Viterbi algorithm, capturing the essént  frequency transformations in the new MATE framework.
information needed for speech recognition tasks. In the HMM The paper is organized as follows. Section 2 reviews the the
framework there also exists a basic mechanism to model ¢1e fr existing techniques used for speaker mismatch reductieatich

guency variability due to speaker, which causes changé®ind- 3 presents the model formulation and the procedure for aestig
cal tract shape. It is provided by the state dependent ofisenv ~ the model parameters using the EM algorithm. Section 4 desu
generating process, which usually is assumed to follow hatit- the results of an experimental study of the new models. Kinal

ity density function pdf as a Gaussian Mixture Model (GMM)Th  discussion and conclusions are presented in Section 5.

vocal tract shape deviations due to a large population ailsys . .
are captured by the state pdfs as different components @hithe 2. Speaker mismatch reduction model based

ture. Then, a number of examples from each one of the shapes ar methods

This work has been supported by the national project TIN 2005 Basic HMM provides a simple, but effective under certaindien
08660-C04-01 tions, mechanism of modeling speaker variability whichsists



of learning the observations generated by the same stateeint S = (s1,..,s7)%, the transformation labels sequele,=
model thanks to a multimodal pdf, as the mixture of Gaussians (ri,...,r7)?, wherex; € RP (with D the dimension of the fea-
But in order to reduce speaker variability mismatch in a nysne- ture vector)s; is an indicator vectos; € {0,1}<, with 1 in the
eral way, frequency warping based speaker normalization-te  state index that generated the observatiepand zeros elsewhere
niques as VTLN, have been applied in many ASR task domains as in [8], and finallyr; is another indicator vectar, € {0,1}%,
[1]. This class of techniques produces a warped frequenale sc  with 1 in the transformation matrix index used to generate the
by selecting an optimum warping function chosen to maxirttize observationk; and zeros elsewhere.
average likelihood of the normalized sequence with resjoeitte The pdf of a sequence of this kind can be written as follows
HMM. using the rule of Bayes,

In [7], it was shown that the procedure for obtaining the fre-
guency warped features was equivalent to a linear projeofithe FX.S,R) = f(S,R)f(X|SR) )

original cepstrum. This work revealed a straight forwardtien- k) -1 t—1 T -1
ship between VTLN and MLLR methods. = [ /fGerdsi™ e ) [ foeexi™, 8, R).
t>1 t>1

Both methods reduce the need of large amounts of data to train
speaker independent models but suffer from two main proklem
The first one is that it is generally implemented as a two peass p

Taking HMM-like assumptions, we can approximate (2) by:

cedure which can make real-time implementation difficulbheT T T

first pass is used to generate an initial hypothesized woinst fX,8,R) = H f(se,relse—1,1e-1) H f(x¢else,re).  (3)
This initial word string is then used in a second pass to nbzma t>1 t>1

the data or the models to reduce the mismatch. The secortddimi L . R

tion is related to the fact that only a single linear warpiagdtion The indicator vectors follow a Multinomial distribution param-

or model transformation is selected for the whole utterafsen eters,

though physiological evidence indicates that all phonetients
do not exhibit similar spectral variation as a result of pblygyi-

N,Q,N
II = {Wq,n,q’,n/}?;1,7?;1,q/:1,n/:17 (4)

being 7, ., » the transition from statég, n) to (¢’,n’) proba-

cal differences on vocal tract shape. The procedure destiib bility,

[5] and generalized in this article, addressed both of tiesees fGeg =11 =1si—1,g =110 =1) =74 g mmr- (5)

and it showed a good performance when compared to previous

methods. The procedure requires only a single pass ovenplo¢ i Making use of it and taking into account that the indica-

utterance and produces frame-specific estimates of thedney tor variables are zeros in all positions except one, then ave c

warping functions. express (3) as (6), where the expanded sfate) pdf in (6),

f(x¢t|st,q = 1,7¢n = 1), follows a distribution of the form of

3. MATE (1). The ensemble of parameters composedbgnd the state

In order to model the vocal tract shape changes during speec}‘Pdfs are referred &9.

utterances and across speakers we propose a model (MATE) ingo gm training algorithm

which a new degree of freedom has been added to track those

changes in a HMM way. When the labeled data of the complete problem is missing as in
Following [7], the spectral warping performed in the previ- Speech applicationss and R are hidden variables, the EM is a

ous decoding method [5] can be seen as a linear projectidreof t Well known algorithm that provides a method for estimatihg t

cepstral feature spacX®” = A,X, withn = 1,--- , N, the parameters of the model in an iterative two step process.
number of warping factors. The first step, E expectation step, consists of calculatieg t
The model is constructed after a state space expansiorsthat i auxiliary functionQ(®(@")) = Eflog f(X,S,R|©)|X, ®")]
similar to [5], where a statgis expanded into statdg, n) withn  thatinvolves expected value computations for the hiddeiabies
the index of the transformations. The new model providegrbs ~ With respect to the data and the model parameters at itarétio
vation generation pdfs in the states that depend on a disseebf It can be expressed as in (7) for our model, where the expressi

transformation matrice§,A, }_,, embedding the warping inthe ~ noted ag-)* refer to the expected values of the variable between
model as a general transformation instead of normalizirig da the parentheses:
before [5]. (st.qren)™ = E[siqrin|X, 0]
Given that a component in the original state pdf mixture fol- (k)
o = =1, = 11X, 0). 8
lows normal distribution\/ (124, ), the expanded states compo- f(sta »THn | ) ®
nents are assumed to follow a distribution:

Xt"ﬂyq NN(A”HWATLEQA;)? (1)

so that the model can generate sequences of warped cepstcem v
tors, which we expect to be closer to real data.

(stfl’qrtfl’nst’q/rt’n/)(k) = E[st—1,qTt—1,n5t,9'Tt,n' | X, (-B(k)]
= f(stfl,q = 177‘t71,7l = 17 St,q' = 17Tt,n/ = l‘Xv @(k?)) (9)

Those expressions are difficult to calculate directly bahits
to the expanded auxiliary functions,,q,», 3t,q,n, Which can be
calculated recursively, computations are reduced to andsble
level. Nevertheless, in order to speed up the method anahdpavi
For clarity in the hidden variable derivation lets firstlysame experimented almost identical results, the expected galug8)
that a complete set of labeled data is available, the joifitopd and (9) can be approximated in hard decision way, (0 or 1)hby t
the data and label sequences is called complete or visibieino  Viterbi decoding algorithm.
The sequences that could be generated by such model are: acep The second step, M maximization step, consists of maximiz-
strum data sequencX = (x1,...,x7)", a state labels sequence, ing theQ(®|®(’“)) function with respect to the model parameters

3.1. Complete modd



f(X7 57 R) = H 71'0’07(1,”31,117'1,71
q,n

t>2gq,q',n,n’

ﬂ_stflyq”‘f*l;’ﬂst,q’7‘t,n’
l l l l q,m,q",n’

H Hf(Xt|8t,q =1,r¢p = 1),

t>1q,n

(6)

QOO =>"(s1,4r1.n) M logm0.0.0.mtY D (St-1.47t-1m50,0Te,0) " 108 T gt b D (st,q7en) *) log f(xt|st,g=1,7n=1).

q,n t>2q,q',n,n’

from each iteration in order to obtain the values for the para
ters in the next iteratior®* ) = arg max Q(©|©*) Finally
(S)

maximizing the expression subject to the constraint,

E Tg,n,q' ,n! = 17Vq7n7

It
q’,m

(10)

‘we obtain the following expressions for the parameter estons
in the iterationk + 1, (for a single Gaussian model for simplicity):

(k)

_ ZtZQ(Stfl,qrtfl,nst,q/rt,n/)

ZtZQ(Stfl,thfl,n)(k)

p = 2 2 (staren) VAL X

! 2o Zn(styqrt,n)(k)
S5 (staqren)® (A e — D) (A b — )t
Zt Zn(stvqrtyn)(k) '

(k+1)
a,n,q’",n’

(1

(12)

(k+1) _
pIpS =

(13)
3.3. M SE Transformation matrices estimation

The rotation matriced\,, allow to this family of models to a great
degree of freedom as they can be any linear transformation fo
the feature vectors, therefore including the VTLN transfation
naturally in the model and in this article we have focusedhi t
transformations.

t>1q,n

Q)]
3.4. Search algorithm

After presenting the way that the model parameters are atimn
we now propose the search algorithm for decoding unlabeded s
guences under this framework,

bqn () = 1;38;1}/( {bg/mr (t=1) Ty nr g} - f(Xelgsm), (18)

whereg() is the score state variable andector contains the state
transition probabilities and'(x¢|n, ¢) is the observation genera-
tion pdf described in (2).

This recursive expression is very similar to the one in [5] an
the main difference is how the warping is done, since nowés th
model who tries to generate or evaluate the warped dataauhste
of normalizing data to fit the model. In the new framework the
covariance is normalized in the model description so theklaa
normalization in [7] is included in the model. The same iestr
tions as in [5] have been applied to the transition matrix.

4, Reaults

In order to evaluate the performance of the new models, aever
experiments have been carried out. The task domain wasadola
and connected digits in the TIDIGITS corpus, which is a noise
free corpus organized in age and gender groups for a tot&2®f 3
speakers (111 men, 114 women, 50 boys, 51 girls). Since the ma
objective of the method is the speaker variability, thispesrand

In order to estimate the transformation matrix as it has been the proposed experimental method have been chosen.

shown in Section 3, we have followed the well known resultef t
multidimensional regression Minimum Square Error (MSHeer
rion, which we sum up in this section. We have selected thia da
driven method as it is suitable for this task but also willpde the
possibility of expanding to more transformations by chagghe
target data.

Let be a linear transformation fora-dimensional source fea-
ture space samplés (D x T'), where T is the number of samples,
to a target feature spadé (D x T'), and we define a general linear
transformation as:

Y = AX +bO, (14)

where we want to estimaté (D x D) and a bias termb (D x 1),
beingO an all oneq1 x T') matrix. Then we define the residual
errore to be the square sum of differences between the de¥ired
data and the projected data as,
e=Tr[(AX+bO-Y)(AX+bO-Y)']. (15)

After taking derivatives with respect t& andb and equaling
them to zero, we will obtain the well know result, valid if theean
intof X isO0:

A = (XX")7'XY".
b= (00" (Y — AX)O".

(16)
7

In all the experiments groups were defined in the training and
testing partitions: 'boy’, 'girl’, 'man’, 'woman’, 'boy + @', 'man
+woman’ and "all’. For thos& groups, HMM 16 state word mod-
els with increasing number of Gaussian components and a-begi
end silence 3 states model and an inter word silence model of 1
state were trained. As feature set, the standard ETSI f=aplus
the energy and their first and second derivatives, were usatl i
the experiments.

On the first experiment, the speaker variability reductiorao
high mismatch task is tested, this experiment was perforomeal
subset of the corpus containing only isolated digits in ptdéest
the ability of the proposed method to reduce inter speaker mi
match in a low training data availability context (3586 &teld
digit utterances for training and 3582 for testing). Sindgematch
conditions were tested, models for MATE where not reesthat
and the simple expansion of the baseline pdfs was performed,
20% of deviation fora was set andV = 5. The results of the
experiments are shown in Figure 1, where the WER is calalilate
as the mean of all the WERs of testing each of the defined group
models with data from a different groug2 tests). It could be
thought that MATE results comparison for a fixed number of $au
sian components as in [5] could carry an increase of the ctanpu
tion cost to obtain a performance that could also be achieyéi-
creasing the number of Gaussian components, but we carvebser

In the experiments in this paper we have proposed a target dat in this experiment that the effect of overtraining is obsbte as

which is the VTLN warped feature vectoX,“, in [5, 6], provid-
ing a transformation matrix for each one of the warping fexcto

the number of Gaussian components grow, since it is a smiall da
set, and MATE can reduce the WER effectively under this kihd o



Table 1:Recognition results in WER for each of the defined groupsémtiatched conditions.

| Group | Man | Woman| Boy | Girl | Man+Woman| Boy +Girl | All |
baseline (% WER) 1.79 1.04 190 | 1.17 2.00 1.50 2.67
MATE (% WER) 1.74 0.91 182 | 0.95 1.80 1.39 2.34
% IMP 2.8 12.7 4.2 18.9 9.8 7.4 12.3
max deviation (%)| +10% | +10% | +5% | +10% +15% +5% +15%
8 . groups (a 9.7% in mean), but the more significative and agplic
e HMM baseline 3 ble to a real system are the last three columns, which carnesp
74| "X~ MATE, % - to the merged groups, as in many ASR systems there is no prior
—e— MATE,AZ A . I ;
information if the kind of speaker.
6l
5. Conclusions
N i In this paper we have presented a model for speech featutervec
o, e e e e sequences in which it is believed to exist certain amounocdll
'-g variability that the usual HMM framework is not able to model
3l even the corpus size and the number of parameters is highly in
creased. The MATE includes naturally frame specific tramséo
ok BPE tions of the speech in the state observation pdfs, by meaas of
_____ - linear projection and a kind of expansion of the states whimés
1F = not increase substantially the number of parameters aséhegin
tied across the expansion.
0 I 5 4 5 s 2 The models have been tested on TIDIGITS corpus in two main

Number of Gaussian components

Figure 1:Mean WER in the speaker train and test models mismatch ex-
periment for the baseline and MATE.

situations. Comparing the best result obtained in the HMKBEba
line, 4 Gaussians, the WER reduction then i80& for MATE,
(MATE std is1.9% vs. a6.6% for baseline), al4% of reduc-
tion was found for VTLN. This experiment shows the ability of
generalization of MATE in speaker mismatch situations.(¢egt
children with trained adult models). The result$;, for baseline
are not surprising since HMMs are not able to generate/rezeg
samples of unseen data (group mismatch). In this experiment
have compared also the effect of the normalization of theugov
ance matrix as it has been described, as in a previous MATE [5]
was not taken into account. Although the effect can be ndtite
appears that there not exists an statistically signifieatifference
in our experiment. The second experiment includes the Hrasa
tion as it does not require any additional computation cost.

In the second experiment, the group model and test examples[4] T. Fukada and Y. Sagisaka

are matched so that the variability inside the defined graaps
be measured. It was evaluated for the complete TIDIGITSusrp
size and results are presented in Table 1. As the corpusssize i
bigger in this experiment the effects of the overtrainingenaot
been evaluated as in the previous one. The model parameters h
been fixed to 1 Gaussian component per state in both baselihe a
MATE tests,N = 5 and various ranges of transformation factor
have been evaluated in this case. MATE in this experimenteas
trained with one iteration as it has been shown in Section@mF
the results it is interesting to note that for the best maxmnange

of transformation factor for the frequency axis, which isgented

in the last row of the table, it is possible to check that, ameeted,

the more compact are the groups it tends to be smaller. For the

more specialized groups: Man, Woman, Girl, Boy, the maximum

experiments: speaker matched and speaker unmatchechgraini
and testing age-gender group conditions, obtaining goedltse

in both of them, specially in the high mismatch cases in witheh
WER reduction can reach to7@% in a relatively small subset of
the corpus and in the smaller mismatch experiments. When the
model is trained with utterances coming from all the groups t
WER reduction can be 8.3%.
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